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A method is presented whereby the translational velocity of a vor-
tex ring can be approximated from the total circulation, impulse,
and kinetic energy of the vortex system. Assuming a uniform vor-
ticity density, these bulk quantities define a unique stable vortex
ring configuration, and the translational velocity can be inferred
from this configuration and the system scaling. Here, the accuracy
of this approximation is presented for vortex rings formed from
starting jets, and the translational velocity is also characterized
as it relates to the driving parameters. The translational velocity
is well approximated for a wide range of experimentally gener-
ated vortex rings. It is observed that starting jets with a converg-
ing radial velocity create vortex rings with a significantly higher
translational velocity. The converging radial velocity was
observed to increase translational velocity by as much as 30%
over parallel jet flows with identical volume flux and nozzle diam-
eter, but the exact increase is specific to the nozzle arrangement
and driving conditions. [DOI: 10.1115/1.4025287]

1 Introduction

Vortex rings are common coherent flow structures that appear
in a wide range of fluid dynamic problems; a review of vortex
rings is presented in Ref. [1]. One of the notable features of vortex
rings is a period of steady translational velocity Utr after the ring
settles to a stable configuration. In practice vortex rings are gener-
ally created by ejecting an axisymmetric jet of fluid into a simi-
larly dense resting fluid reservoir. The free end of the shear tube
extending into the reservoir spirals up on itself rolling into a vor-
tex ring. Jet flows created from cylinder-piston mechanisms enter
the reservoir with nearly parallel streamlines, whereas jets ejected
through a circular orifice in a flat plate contain a converging radial
component of velocity. For both configurations, the piston velocity
up is defined as the ratio of volume flux traveling through the nozzle
to cross-sectional area up ¼ �V=pR2. Here, �V is the volume flux pass-
ing through the nozzle and R is the nozzle radius. By this definition,
the piston velocity is the average jet velocity passing through the
orifice independent of the mechanism used to drive the flow.

The self-induced propagation velocity of vortex rings has been
the subject of multiple studies. A formula for the translational ve-
locity of a thin-cored vortex ring was given without proof by Lord
Kelvin and later derived and expanded for the cases of uniform
vorticity distribution in the vortex core by Fraenkel [2] and a hol-
low vortex core by Hicks [3]. Saffman [4] expanded this deriva-
tion to include any general vorticity distribution by use of a
transformation inspired by Lamb [5]. The resulting translational

velocity collapsed onto the velocities calculated by Fraenkel and
Hicks when the core vorticity was set to a uniform and hollow dis-
tribution, respectively. Moffat and Fukumoto [6] expanded this
derivation (which is accurate to the first order of the mean core ra-
dius e) to be accurate to the third order of the mean core radius, e,
thus improving the solution for thick-cored vortex rings, even
coming within 5% of the translational velocity of Hill’s spherical
vortex (a vortex ring of maximal thickness e ¼

ffiffiffi
2
p

[7]). Applying
a conservation of mass analysis and making basic assumptions
about the nature of entrainment in the ring, Maxworthy related the
decay rate of the translational velocity to the fluid viscosity [8,9],
which showed a faster decay of translational velocity than predicted
by Ref. [4] because the experimentally generated vortex rings had
an appreciable thickness. The decay of vortex rings in confined
spaces was related to circulation decay by Stewart et al. [10].

The velocity of arrays of vortex rings traveling in close succes-
sion are investigated, along with minimum separation distance by
Krueger in Ref. [11], observing translational velocities close to
half the piston velocity, similar to single vortex rings. Vortex
rings created with inclined tube exits [12] do not show steady
translational velocity, as the stopping and additional vortices
become intertwined with the primary ring, creating much more
dynamic behavior.

It should be noted that in the preceding investigations the transla-
tional velocity follows from an exact knowledge of the vorticity dis-
tribution inside the ring. However, this quantity is not often
available and it cannot be easily calculated from the properties of
the starting shear layer which is known for a given vortex generator.
Determining the vorticity distribution of the resulting vortex ring
from the parameters of the starting jet requires solving the evolution
of the entire flow field, at which point the translational velocity does
not need to be modeled and can be evaluated directly.

Considering the process of generating a steadily translating vor-
tex ring from a starting jet as a statistical equilibrium process,
Mohseni [13] has shown that all of the nonlinear Casimirs of
motion In ¼

Ð
xndV will not be preserved at any resolvable scale

during the formation process. Here x is the local fluid vorticity.
Thus, the flow will not have a memory of the higher moments of
initial vorticity distribution. The only surviving invariants of
motion will be the vortex energy, impulse, and the first Casimir of
motion, namely the circulation C ¼

Ð
xdV. The slightest amount

of viscosity will violate conservation of the higher moment of vor-
ticity; see Ref. [13]. This article is aimed at obtaining a formula-
tion for translational velocity of a vortex ring based on the
invariants of motion of its generating mechanism (since these
invariants are preserved in the resulting vortex ring) instead of a
formulation that requires direct knowledge of the vortex ring vor-
ticity distribution. Using a variational analysis and equating the
circulation, impulse, and energy of the vortex ring to that of a
starting jet with an impulsive velocity program (up ¼ constant)
and uniform velocity profile, Mohseni and Gharib [14] arrived at
the classic result that translational velocity is close to one-half the
piston velocity. This analysis was extended to a wider range of
mean core radii by Mohseni [15]. Additionally, the invariants of
motion of starting jet flows with nonuniform axial velocity pro-
files, and nonzero radial velocity, where the 1D slug model pro-
vides a poor estimate, are derived in Ref. [16].

This paper presents a formulation for approximating the vortex
ring translational velocity from the total circulation, impulse, and
energy of the vortex ring. This analysis assumes that the vortex ring
belongs to a family of known “standard” vortex rings, and the total
jet quantities are used to identify the vortex ring configuration and
resulting steady state translational velocity. Several vortex rings are
created with fundamentally different translational velocities and
core thicknesses to validate the accuracy of this approximation.

2 Velocity Approximation

The majority of vortex ring models are parameterized by the
vortex ring toroidal radius l, translational velocity Utr , mean core
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radius e, and vorticity density function X, as shown in Fig. 1. The
mean core radius e is a dimensionless parameter that describes the
thickness of the vortex ring. For a vortex ring of core area Ac, the
mean core radius is defined e � ½Ac=pl2�1=2

and can range from
e ¼ 0 for vortex filaments to e ¼

ffiffiffi
2
p

for Hill’s spherical vortex.
The vorticity density function is defined Xðx; rÞ � x=r; if the vor-
ticity density is assumed to be constant within the core area, then
there is a unique set of stable solutions for the vortex core bound-
ary d, which we refer to as the Norbury family of vortex rings
[2,17–19], or sometimes called standard vortex rings. All vortex
rings of this family can be collapsed onto a self-similar ring, and
this set of rings varies purely as a function of the mean core radius
e. The circulation, impulse, and energy of Norbury vortices are
normalized by the toroidal radius, mean core radius, and vorticity
density:

Cc ¼ Xe2l2
� �

lCN (1a)

Ic ¼ q Xe2l2
� �

l3IN (1b)

Ec ¼ q Xe2l2
� �2

l3EN (1c)

Here the subscript c refers to the values of the vortex ring and the
subscript N refers to the normalized quantities as reported by Nor-
bury [17]. Instead of scaling by the characteristic ring parameters
the ring energy can be nondimensionalized by the other two bulk
flow quantities so that the dimensionless energy becomes

a ¼ Ec= I1=2
c C3=2

c

� �
, as was done in Refs. [13,14,20,21]. Note that

this normalization eliminates the geometric scaling terms of Eq.
(1) so that for vortex rings in the Norbury family

a ¼ EN=ðI1=2
N C3=2

N Þ, which is purely a function of e.
Similarly, if the translational velocity of the vortex ring Utr is

known then the circulation can also be made dimensionless
b ¼ Cc=ðI1=3

c U
2=3
tr Þ as was done in Refs. [13,14]. Again the dimen-

sionless circulation is purely a function of mean core radius for
standard vortex rings, b ¼ CN=ðI1=3

N W2=3Þ, where W is the normal-
ized translational velocity of the vortex ring defined in Ref. [17],
Utr ¼ Xe2l2ð ÞW.

Therefore, if the circulation, impulse, and energy of the vortex
ring are all known, then the mean core radius can be interpolated
from the dimensionless energy a. Additionally the translational
velocity can then be determined from the dimensionless circula-
tion corresponding to that mean core radius:

Utr ¼ C3=2
c = I1=2

c b3=2ðeÞ
� �

(2)

For reference the dimensionless energy and circulation, as deter-
mined in Ref. [17], are depicted in Fig. 2(a) with respect to mean
core radius. Fortunately, the dimensionless energy and circulation
have a relationship that eliminates the need to interpolate e. Figure
2(b) shows the inverse of the nondimensional energy 1=a, plotted
with respect to the corresponding nondimensional circulation
taken to the power of 3=2 (b3=2). It can be seen in this figure that
the quantities have a nearly linear proportionality, which is dem-
onstrated by the line fitted to the form b3=2 ¼ c1 þ c2=a, with
c1 ¼ 1:13 and c2 ¼ 0:52. This allows the translational velocity of
the vortex ring to be written in terms of the bulk quantities alone:

Utr ¼
C3=2

c Ec

c1I
1=2
c Ec þ c2IcC

3=2
c

(3)

This is a useful conclusion because the total circulation, impulse,
and energy can be determined in starting jet flows from the jet ve-
locity profile [22].

Next we experimentally evaluate the validity of this approxima-
tion for translational velocity for experimentally generated vortex
rings. As was mentioned previously, the Norbury family of vortex
rings is derived assuming that the vorticity density function
X ¼ x=r is constant over the cross-sectional area of the vortex
core. In actuality, the vorticity distribution in stable vortex rings is
not proportional to the distance from the axis of symmetry but
exhibits an almost bell shape vorticity distribution centered about

Fig. 1 Layout of a typical vortex ring created from a starting jet
and coordinate system of the problem

Fig. 2 Dimensionless energy and circulation for the Norbury family of vortices [17] are
shown (a) with respect to mean core radius e and (b) with respect to each other
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the vortex center of vorticity [23–25]; the exact vorticity distribu-
tion is modeled in great detail by Fukumoto and Kaplanski [26].
However, it should be noted that the analysis of Saffman [4] for
thin-cored rings showed no change in translational velocity for
different vorticity distributions, provided that the vorticity density
function is symmetric about the centroid. Therefore, this manu-
script will also loosely demonstrate whether a similar invariance
exists for thick vortex rings as well.

3 Vortex Generator

The fluid actuator used to create the vortex rings in this investi-
gation consists of a sealed off canister submerged in a fluid reser-
voir. The vortex generator has an internal cavity with a moving
plunger to move fluid in or out of the cavity; see Fig. 3. The
plunger is a semiflexible accordion style bellows that expands axi-
ally but maintains a constant diameter. The expansion is driven by
a mechanical system with an ability to create any desired deflec-
tion program. The cavity is attached to both tube and orifice noz-
zles in order to create both parallel and converging jets. The
different nozzle arrangements are illustrated in Fig. 3.

When a jet is expelled through the orifice nozzle, some of the
fluid inside the cavity must converge to the center in order to pass
through the nozzle, and these converging streamlines persist
downstream resulting in a converging radial velocity. The tube
nozzle is a long tube connected to the end of the cavity. The tube
is sufficiently long, >6D, to ensure a parallel jet flow in the tube
prior to ejection. The outside of the tube is tapered at the exit with
an angle c, as shown in Fig. 3. The tube nozzles used in this inves-
tigation have a taper angle of c � 11 deg.

Unlike cylinder-piston mechanisms that have a constant diame-
ter and adjust stroke ratio L=D, by extending the piston displace-
ment, this assembly expels a uniform jet volume and uses nozzles
of varying diameter to change the jet stroke ratio. As is summar-
ized in Table 1, large stroke ratio jets are created with tube and
orifice nozzles of radius R ¼ 0:93 cm and small stroke ratio jets
from nozzles with radius R ¼ 1:3 cm.

4 Experimental Setup

The experimental setup for this research is comprised of a tank that
houses a large fluid reservoir, a high-speed flow visualization and
filming system, and a data acquisition assembly that controls and
records motor position and synchronizes filming and jet actuation.
The vortex generator is sealed within a transparent canister that is sub-
merged fully within the fluid in the testing tank. An illustration of this
setup is provided in Fig. 4 along with a picture of the actual setup.

The water tank is 2.4 m tall, and 1 by 1.3 m in cross section and
houses 2.65 kl of water. The tank is made out of acrylic to allow
for visual access from all angles (including the bottom of the
tank) and is supported by an outer steel skeleton. At the top of the
tank is a mounting structure that holds the vortex generator in
place. The flow visualization is performed using a high-speed
camera and illumination apparatus. As depicted in Fig. 4(a) a 2D
cross section of the flow is illuminated with a laser sheet. The
laser sheet is generated by a 1 W 532 nm laser (Aixis GAM
1000B) expanded through a cylindrical lens within the tank, and
is �1 mm thick. The illuminated cross section of the flow is
recorded at 150–250 frames per second depending on the piston
velocity. The camera used is a monochrome Phantom v210.

5 Digital Particle Image Velocimetry (DPIV) Analysis

Description

The high-speed video of the jet flow is analyzed using a com-
mercial software, with DPIV algorithms similar to those described
in Refs. [27,28] to determine a velocity field~u ¼ u; v½ �T in the illu-
minated cross section of the jet flow. Frames (1280� 800 pixel
resolution), were divided into 32� 32 pixel interrogation win-
dows (with 50% overlap). Depending on exact nozzle diameter
and optical zoom, the total DPIV velocity field domain ranged
from 3:83� 6:12 diameters to 5:22� 8:35 diameters, with the
long dimension of the image aligned with the axis of symmetry,
resulting in relative resolutions in the range 10–12 grid-points per
diameter. Strict care was taken to ensure that the laser sheet

Fig. 3 Conceptual diagram of the layout of different nozzles used to generate various jet flows for this experiment

Table 1 Summary of experimental trials used in this investigation. Piston velocity and Re range listed for all trials in each case.
Nondimensional energy, velocity ratio, and approximation accuracy are all calculated after the jet has settled on a stable
configuration.

Case Nozzle radius (cm)

L

D # trials up (cm/s) Re=1000 a (Std. dev.)

Utr

up
(Std. dev.)

g (%) (Std. dev.)

1 Tube 1.3 2.4 5 5–13 1.3–10 0.38 ð60:03Þ 0.47 ð60:02Þ 4.1 ð63:3Þ
2 Tube 0.91 6.9 4 6.5–11 5.5–15.6 0.24 ð60:01Þ 0.60 ð60:05Þ 4.5 ð62:0Þ
3 Orifice 1.3 2.4 5 6.5–13 4–10.5 0.33 ð60:03Þ 0.77 ð60:03Þ 1.1 ð60:6Þ
4 Orifice 0.93 6.8 3 5.5–9 4–10.5 0.31 ð60:03Þ 0.78 ð60:02Þ 2.1 ð62:5Þ
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bisected the flow through the jet axis of symmetry so that the
filmed jet flow corresponds to axisymmetric flow.

The boundary of the vortex ring core d is determined from the
vorticity field as an isovorticity contour at some small threshold
value xe, which is above the background noise level. It should be
noted that the isovorticity contour corresponding to the vortex
boundary often includes multiple rings in the trailing wake for
large stroke ratio jets. Therefore, the leading vortex ring core
boundary is determined as the closed isovorticity contour enclos-
ing the peak vorticity. Defining the core area Ac as the region
encompassed by the core boundary d and assuming the flow to be
axisymmetric with no swirl, the circulation, impulse, and energy
of the leading vortex ring can be determined from the vorticity
and velocity fields [29,30].

Cc ¼
ð

Ac

xdrdx;

Ic ¼ p
ð

Ac

xr2drdx;

Ec ¼ p
ð

Ac

u2 þ v2
� �

rdrdx

(4)

Of course the center of vorticity of the vortex ring, whose motion
is used to calculate the translational velocity of experimentally
generated rings, is not necessarily at the same location as the peak
vorticity value. The definition of the center of vorticity is given in
Refs. [5,31] in terms of vorticity integral quantities. Restricting
the integrals to the vortex core area Ac allows the vortex centroid
to be determined:

l2 ¼

ð
Ac

x/r2drdx

ð
Ac

x/drdx
; xc ¼

ð
Ac

x/r2xdrdx

ð
Ac

x/r2drdx
(5)

Here, l and xc are the radial and axial positions of the center of
vorticity as depicted in Fig. 1.

Now the translational velocity and invariants of motion of
experimentally generated vortex rings can be determined from
DPIV data.

6 Results

The vortex generator of this investigation was used to create
vortex rings from both parallel and converging starting jets with

both high and low stroke ratios. Jets with low stroke ratio roll into
a single vortex ring, whereas jets with higher stroke ratio produce
a leading vortex ring and trailing wake, as was observed by
Gharib et al. [21].

The jet flows examined in this study have a nearly impulsive
velocity program. This means that the piston velocity of the jet
rapidly accelerates at the onset of flow then maintains a nearly
constant value for the remainder of pulsation. The resulting jets are
filmed in cross section and the video analyzed as described previ-
ously to recover a history of circulation, impulse, and energy of the
leading vortex ring, as well as the motion of the center of vorticity.

The experimental trials are summarized in Table 1. Each case
listed (set of nozzle type and nozzle radius) has a range of trials
with different piston velocities, which are listed in the table, but
for each trial the piston velocity was held relatively constant. We
define the accuracy of the velocity approximation as,
g ¼ Utr�approximate � Utr�PIV

�� ��=Utr�PIV , which is also listed in the
table for the different cases. Values for Utr=up, g, and a are calcu-
lated a sufficient amount of time after pulsation when the vortex
ring has settled. The values are then averaged for all trials, which
are reported along with the standard deviation. Table 1 also
reports the jet Reynolds numbers calculated as Re ¼ Cc=�, and
the vortex ring circulation is averaged over the same period of
time as Utr=up, g, and a.

Lord Kelvin stated that the motion of a vortex system will mini-
mize the energy Hamiltonian of the system, under area preserving
isovortical perturbations [32,33]. This equates the translational ve-
locity, a Lagrange multiplier of impulse in the energy Hamilto-
nian, to the ratio Utr ¼ dE=dI. Using the 1D slug model
approximation (uðrÞ ¼ up, vðrÞ ¼ 0) to calculate total circulation,
impulse, and energy created in the jet and equating the vortex sys-
tem to the Norbury family of vortex rings, Mohseni et al. [14,15]
derived the translational velocity in terms of piston velocity from
Kelvin’s variational theorem. This analysis showed that the trans-
lational velocity will be approximately half the piston velocity,
Utr � 1=2up. This relationship has been well documented for par-
allel starting jets; however, the 1D slug model is demonstrated to
be a poor prediction of nonparallel starting jets [22] so the rela-
tionship between piston velocity and translational velocity is
likely very different.

Equation (3) gives an approximation for the translational veloc-
ity of a steady vortex ring in the Norbury family with specified
circulation, impulse, and energy. The actual translational velocity
of several vortex rings was determined from the motion of the
center of vorticity of the leading vortex ring. The measured trans-
lational velocity is shown in Fig. 5, as well as the translational

Fig. 4 Testing environment; (a) schematic diagram and (b) actual layout. Tank is approximately 1 m 3 1.3 m 3 2.4 m.

124501-4 / Vol. 135, DECEMBER 2013 Transactions of the ASME

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 10/18/2013 Terms of Use: http://asme.org/terms



velocity as predicted by Eq. (3) using circulation, impulse, and
energy of the primary vortex ring measured from DPIV data, Eq.
(4). Figure 5 also shows the piston velocity over the same time pe-
riod as a reference velocity.

Figures 5(a) and 5(b) (corresponding to cases 1 and 3 in Table
1) show that the translational velocity of steady vortex rings cre-
ated from jets with a low stroke ratio is well predicted by Eq. (3),
but the vortex ring only settles upon a stable configuration after
the formation dynamics have subsided. During the period of sub-
stantial vortex ring growth, the actual vortex ring translational ve-
locity is not predicted accurately. In general low stroke ratio jets
create thin-cored vortex rings, as evidenced by the low nondimen-
sional energy a of case 1 as reported in Table 1; case 3 creates a
thicker ring because of the increased circulation flux associated
with the converging radial velocity. Therefore, Eq. (3) can be con-
sidered valid for thin vortex rings, despite the poorly represented
vorticity density function.

The jets expelled with a higher stroke ratio, Figs. 5(c) and 5(d)
(cases 2 and 4), experience a much more energetic/dynamic
pinch-off that results in oscillations in both Utr and l as the pri-
mary vortex ring settles upon a stable configuration due to the
interaction of the leading vortex ring with the trailing jet. Eventu-
ally these vortex rings stabilize and translational velocity closely
approaches the predicted velocity of Eq. (3), but the vortex ring
does not acquire a stable configuration until well after pinch-off,
when there is a large enough distance between the leading vortex
ring and the trailing wake. This demonstrates that the propagation
velocity is very sensitive to the formation dynamics. Since high
stroke ratio jets create thicker vortex rings (see Table 1) Eq. (3)
can also be considered an accurate approximation for thick vortex
rings, suggesting that thick rings also have similar translational
velocities for different vorticity distributions, provided that those
distributions are symmetric.

It can also be seen that despite the similar piston velocities the
vortex rings formed from the converging jets have significantly
larger translational velocities. After settling on a stable configura-
tion, vortex rings created from the parallel starting jets have an

average translational velocity close to half the piston velocity,
47 6 2% for low stroke ratio (case 1) and 60 6 5% for large stroke
ratio (case 2), whereas the converging jet vortex rings have average
translational velocities that are 77 6 3% of the piston velocity for
low stroke ratio (case 3) and 78 6 2% of the piston velocity for large
stroke ratio (case 4). This could help explain a large variation in reported
vortex ring translational velocities with the same piston velocity.

7 Conclusion

This study provides a heuristic method for approximating the
translational velocity of a vortex ring from the total circulation,
impulse, and energy of the ring. The technique essentially equates the
vortex ring to a member of a known family of stable vortex rings, and
the translational velocity is inferred from the known configuration.

Multiple vortex rings were created experimentally and analyzed
using standard DPIV techniques. The method proposed here pre-
dicted the translational velocity of the ring very well after the ring
had settled on a stable configuration, for all cases, including vor-
tex rings created from converging starting jets where standard 1D
slug approximations fall short. Additionally, this approximation is
observed to be equally accurate when predicting translational ve-
locity of thin core versus thick core vortex rings. During the initial
formation stages, the ring has not settled on a stable configuration
and will not achieve the same translational velocity of a stable
ring with the same circulation, impulse, and energy.

Acknowledgment

This work is supported by a grant from the Office of Naval
Research.

Nomenclature

AC ¼ vortex ring core area
E ¼ energy
I ¼ impulse
l ¼ vortex ring toroidal radius

Fig. 5 Vortex ring translational velocity and piston velocity versus formation time, t*, for (a) case 1, (b) case 3,
(c) case 2, and (d) case 4, as summarized in Table 1
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R ¼ nozzle radius
Utr ¼ vortex ring translational velocity
up ¼ piston velocity
a ¼ nondimensional energy of the vortex ring
b ¼ nondimensional circulation of the vortex ring
e ¼ vortex ring mean core radius
C ¼ circulation
X ¼ vorticity density (distribution) function
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